THE PyrpLE

PLANET

Micro-PROLOG
forthe Spectrum 48K

The Purple Planet
Micro-PROLOG for the Spectrum 48K

Macmillan Microcomputer Books

General Editor: 1an Bimbaum
(General Adviser (Microelectronics in Education)
Education Department, Humberside County Council)

Advanced Graphics with the Acorn Electron
Ian O. Angell and Brian J. Jones

Advanced Graphics with the BBC Model B Microcomputer
Ian O. Angell and Brian J. Jones

Interfacing the BBC Microcomputer
Brian Bannister and Michael Whitehead

Assembly Language Programming for the Acorn Electron
Ian Birnbaum

A.wfembly Language Programming for the BBC Microcomputer (second edition)
an Bimbaum

Using Your Home Computer (Practical Projects for the Micro Owner)
Garth W. P. Davies

Microchild - Learmng through LOGO
Serafim Gascoigne

A Science Teacher’s Companion to the BBC Microcomputer
Philip Hawthorne

Beginning BASIC with the ZX Spectrum
udith Miller

Using Sound and Speech on the BBC Microcomputer
Martin Phillips

File Handling on the BBC Microcomputer
Brian J. Townsend

Good BASIC Programming on the BBC Microcomputer
Margaret White

Other Books of related interest

Advanced Graphics with the IBM Personal Computer
Ian O. Angell
Advanced Graphics with the Sinclair ZX Spectrum
Ian O. Angell and Brian J. Jones
Besinm'% BASIC
eter Gosling
Continuing BASIC
Peter Goslu?
Practical BASIC Programming
Peter Gosling
Program Your Mzcmcomputer in BASIC
Peter Goslin
More Real A p{ lications for the ZX81 and ZX Spectrum
Randle Hurley
ThJe ﬁlllxen, Numbereater, and Other Programs for Personal Computers
ol
Computer Literacy: A beginners’ guide
Vlgcent Walshcy ¢ &

Masterm{ Computers

Masten Computer Programming

osling
Mgmp Data Processing

.B
Mastering COBOL
R. Hutty
Mastering Pascal Programming
. Huggins

The Purple Planet

Micro-PROLOG
for the
Spectrum 48K

Serafim Gascoigne

M

MACMILLAN

© Serafim Gascoigne 1985

All rights reserved. No reproduction, copy or transmission
of this publication may be made without written permission.

No paragraph of this publication may be reproduced, copied
or transmitted save with written permission or in accordance
with the provisions of the Copyright Act 1956 (as amended).

Any person who does any unauthorised act in relation to
this publication may be liable to criminal prosecution and
civil claims for damages.

First published 1985

Published by

Higher and Further Education Division
MACMILLAN PUBLISHERS LTD
Houndmills, Basingstoke, Hampshire RG212XS
and London

Companies and representatives

throughout the world

British Library Cataloguing in Publication Data
Gascoigne, Serafim
The Purple Planet: Micro-PROLOG for the Spectrum 48K.
1. Sinclair ZX Spectrum (Computer) — Programming
2. Micro-PROLOG (Computer program language)
1. Title
001.64'24 QA76.8.5625

ISBN 978-1-349-07862-2 ISBN 978-1-349-07860-8 (¢eBook)
DOI 10.1007/978-1-349-07860-8

Contents

Preface ix
1 The Purple Planet 1
Describing your program - Loading Micro-PROLOG - Atomic
sentences - Correcting mistakes - save and load -
Programming bugs - A logical 1language - Building a
database - Sentence patterns - Activity 1 - Editing in
PROLOG - From English to PROLOG - Logical nonsense -
Asking questions (atomic questions) - A query game -

Database for the Purple Planet - Using PROLOG now!
2 The Nurks Strike Back! 20

Variables in PROLOG - Using which - The variable box -
Expanding the variable box - Cracker jokes - Molecular
questions - Extending the game - Activity 2 - Molecular
questions with variables - Joke Box with molecular
questions - One by one - Activity 3 - Summary

3 Birds, Friends and Neighbours 36

Lists as individuals - Everyday lists - List processing
- List patterns - Prose writing using lists - Joke Box

again - Lists as records - Data retrieval - The
conditional rule - Asking questions - Rules for Joke
Box - Individuals in a list - Heads and tails - More

heads and tails - Telephone and address file - Activity
4 - Activity 5

4 Animal, Vegetable or Mineral? 57

Customs check - Airport security - Roman dig - Fraggle
Rock - Recursion - PFamily tree - Activity 6 - Lists and
recursion - The length of a 1list - International
athletics - ©Negation - Using not and belongs-to -
activity 7 - Building lists

vii

viii Contents

5 Expert Systems 74
Mini expert systems - First Aid - Weight-watcher -
Spanish soups - Holiday Guide - A holiday in West

Yorkshire - Personal-Doctor - Bake-a-cake

6 PROLOG Arithmetic 85
Addition and subtraction (difference) - Multiplication
and division - Limitations - Checking arithmetical

operations - Using LESS - Solar System - Great Rivers -
Activity 8 - Other uses of LESS - Great Inventions and
Discoveries - Supermarket

Appendix 1 95

Error messages - Checking your database - Printing on
the screen

Appendix 2 98
Standard Syntax - Using Standard Syntax - MICRO -
Sentences in MICRO - Rules in MICRO - It’'s the real

thing - Joke Box

Appendix 3 106
Sample programs: Gardening Calendar - Daily Spread -
Footballs - Social Psychology - Your Personality -

Treasure Hunt - Space Probe
Appendix 4 125
PROLOG Command Syntax: Simple, Micro & Standard

Index 129

Preface

Would you like to use your Spectrum for more than games
and other types of ready-made software? Are you
interested in writing your own computer programs?
Programming is not as difficult as some people might
believe. What is more, some highly sophisticated
computer languages are available for the home micro.
Micro-PROLOG is one of them. It comes from a new
science called Artificial 1Intelligence. This is the
science of building “intelligent’ machines.

Through Micro-PROLOG you too can explore this
fascinating world of ‘intelligent’ computers. You can
write your own expert system and ask your computer
questions. It can ask you questions and give you
advice as well!

You can create your own adventure games, a fantasy
world with its own rules or invent a fault-finding
system to test electrical circuits. Whatever ‘expert’
knowledge you have, from collecting things to cooking
continental dishes, Micro-PROLOG provides you with an
‘“intelligent”~ database language, through which you and
your computer can ask each other questions. It also
allows you to build your own language at the keyboard.
Whether you are a complete beginner to computing or are
considering a career in computer technology,
Micro-PROLOG 1is a must. It is one of the languages of
the future. It has for instance been chosen by the
Japanese government to be the main language of their
fifth generation computers. The only limitation to
Micro-PROLOG is your own imagination!

To make it easier for the reader to identify
different sections of program 1listings shown in the
text, the following symbols are used to indicate the
different parts of the program:

For new items of data
For any rules of syntax

For any interrogation routines

aul=-t 2

ix

1 The Purple Planet

Loading Micro-PROLOG
Before you begin programming in Micro-PROLOG you will
need to load the cassette as follows.

1. Place the Micro-PROLOG cassette 1in your cassette
player and press the LOAD key on the SPECTRUM. Next
type "PROLOG" and press the ENTER key and the play
button on your cassette player.
After a minute, the following copyright message will be
displayed
Spectrum micro-PROLOG T1.0
C 1983 LPA Ltd.
XXXX
&.L

2. Now type LOAD SIMPLE. SIMPLE is a modified version
of Micro-PROLOG, which 1is used throughout this book.
It is nearer to ordinary English than Micro-PROLOG and
is therefore easier to understand. Once SIMPLE has
been loaded, the prompt sign &. will appear. You are
now ready to begin.

Describing your program

Most computer languages consist of instructions or
commands to the computer such as PRINT, DRAW, PLOT, or
MAKE. They tell the computer to do this or that. 1In
order to write a conventional computer program you are
normally required to know how the program works.
Although this may seem obvious to you, in Micro-PROLOG
you do not have to know how the program works, but
rather what it does.

2 The Purple Planet — Micro-PROLOG for the Spectrum 48K

In Micro-PROLOG, or simply PROLOG as I shall refer
to the language throughout this book, there are just a
few commands. For the most part PROLOG works with
descriptions rather than instructions. You do not, for
example, write a list of instructions as you would if
you were using BASIC. The information or data you have
collected is put into your program in the form of
descriptions, that is sentences, that describe what
your program does. For example, a typical 1line of a
program in PROLOG could be

Zorg likes Selina

This does not tell the computer to do anything. It
simply states a fact. Another typical line could be

Owls belong-to Land-birds

This program line is a description about owls, not an
instruction to the computer to do something.

But surely the computer must do something with the
data (information) that has been fed into it! It does.

It stores this data in its memory. You can then ask
questions about this data.

PROLOG, which stands for PROGramming in LOGic,
is what 1is known as a database language. Your
descriptions or data can be stored in the form of
descriptive statements, which can then be manipulated
according to specific ‘rules’ which you have invented.
PROLOG 1is very much a personal computer language.
Although its syntax (that is, its word order) may seem
a little strange at first, as you work through the
examples in this book, you should become familiar
enough with the language to make it your own and use it
for your own personal applications. PROLOG can be used
for all sorts of purposes. You can describe absolutely
anything: from the view outside your bedroom window, to
how to survive in a thunder-storm! You can describe
anything, question 1it, and then do things with it,
according to your own ‘rules’. You can either write a
simple record of addresses and telephone numbers or
invent an interactive problem-solving program, such as
to find out whether you have a high or low calory
content in your cooking (Weight-watcher program), or
write a home doctor program that advises you on what to
do if you have a headache (Personal-Doctor program).

The Purple Planet 3

Looking at the picture of the Purple Planet, you can
use PROLOG to describe what is taking place on the
planet. But before you begin, let us look at the story
so far.

"The spaceship Galactic Enterprise has been in space
for one year. It needs a special ore to refuel its
nuclear motors. The crew also needs food. The
pilot-computer discovers a nearby planet. The
spaceship 1lands. The entire planet is covered with
purple lichen. There is no-one to be seen. Captain
Tee, Selina and Doc go exploring. They find a cave
which leads to an wunderground city. The city is
inhabited by robots. They meet a friendly robot called
Zorg. In the city they find the ore thay they need for
the ship’s motors. Food and water however are to be
found on the surface. This is a problem, since the
surface is inhabited by monsters called Nurks."

4 The Purple Planet — Micro-PROLOG for the Spectrum 48K

Atomic sentences (binary form)

The simplest sentence that can be written in PROLOG is
called an atomic sentence. ‘Atomic’ is wused here to
mean ‘basic’. PROLOG descriptions are made up of basic
or atomic sentences which like building blocks are used
to make up the language. One way to write an atomic
sentence is to use the form

Name of Individual - Name of Relation - Name of
Individual

I shall abbreviate this to Ind - Rel - Ind. This type
of atomic sentence consists of an individual word
linked to another individual word by a relation word.
Thus for example in the sentence

Zorg likes Selina

the individual word Zorg 1is linked (related) to the
individual word Selina by the relation word likes.
Again in the sentence

Owls belong-to Land-birds

Owls (individual word) is related to Land-birds
(individual word) by the relation word belong-to.
Here are more some examples of atomic sentences

Ind Rel Ind
zZorg lives-in city
water found-on surface
Nurkl 1lives-on surface
fuel found-in city

There are other forms of sentence, but these you
will meet later. For the moment however, let us 1look
at some more descriptive ‘atomic® sentences which
describe the Purple Planet and which again use the form
Ind - Rel - Ind.

Planet covered-with lichen
Spaceship lands-on Purple-Planet
Capt-Tee likes underground-city

These pieces of data can be fed into the computer by
using the command word add, and by placing the atomic
sentences in brackets. For example to add the sentence
(Zorg lives-in city), you type

add(Zorg lives-in city)

and press the ENTER key. This fact or piece of data
about Zorg is now stored in the computer s memory.

The Purple Planet 5

Here are the other sentences for you to add to the
program:

add(water found-on surface)

add (Nurkl lives-on surface)

add(fuel found-in city)

add(Planet covered-with lichen)
add(Capt-Tee likes underground-city)
add(Spaceship lands-on Purple-Planet)

Note the use of the hyphen in the relations

lives-in found-on
lives-on found-in
lands-on

and in the names of individuals

Capt-Tee Purple-Planet
underground-city

Two or more words for the name of an individual or a
relation have to be strung together by hyphens. Thus
you could have

Ind Rel Ind
Chief-Nurk likes-eating lost-travellers
You must-use hyphens-in-PROLOG

In these two examples, individual words are made up of
two or three words strung together by hyphens.

If you have managed to enter these sentences without
any difficulty, I would suggest you practise making up
your own atomic sentences, using the binary form Ind -
Rel - Ind with the following vocabulary from the Purple
Planet. You can of course use any words you like.
Don 't forget however to use hyphens when necessary.

Ind Rel Ind
Captain-Tee likes food
Selina hates water
Doc lives-in fuel
Zorg lives-on city
Astra found-in surface
Zenith found-on

X-101 dangerous
Chief-Nurk friend

Nurkl not-friend

Nurk?2 attacks

robot

6 The Purple Planet — Micro-PROLOG for the Spectrum 48K

Correcting mistakes

Before you press the ENTER key, you can correct any
typing mistakes by wusing the DELETE key (CAPS SHIFT
with 0) to delete back to before the mistake, or vyou
can use the cursor Keys. To use these keys, press CAPS
SHIFT and 5, until the cursor (that is, the flashing L)
is just after the letter or word you wish to correct.
Now press CAPS SHIFT and 0 to delete your mistake. of
course you can position the cursor by using the CAPS
SHIFT key with 8. The directions of the cursor are
shown above these keys 1in the form of arrows. (For
further information, you should refer to your Spectrum
manual). When you are satisfied that your data
(sentence) is correct, press ENTER as before.

Syntax (word order) errors
If you type the word order of your sentence incorrectly
(that is, use a form of sentence that the computer does
not understand) you will receive an error message which
states that your sentence is not a valid sentence.

If you receive such a message, check your sentence
for these common errors

. You forgot to use hyphens (when necessary).
You typed ADD instead of add.

You forgot to use brackets.

Your word order is incorrect.

You forgot to LOAD SIMPLE.

Db w N+
N

(For a list of error messages see Appendix 1)

save and load

After having written your own sentences, you might like
to give them a program name and save them on cassette.
To do this:

1. Type save followed by the name of your program. For
example, save mystuff or save MYSTUFF (the use of
capital letters for your program name is optional).

You can use almost any name you like for your
program, as long as you do not use an in-built PROLOG
word (such as add or any of the others in this book) or
a relation word from your own sentences.

2. Press the ENTER key.
3. Press the record and play buttons on your cassette
player and record your work.

When the recording is complete the prompt symbol &.
will reappear on the screen. (Don’t forget to unplug
the connection to the ear socket on your Spectrum when
you are recording. If you forget, you may get some

The Purple Planet 7

feedback from the cassette player, which will spoil the
recording.)

To reload your work
1. Type load and the name of your program, namely load
mystuff.

2. Press ENTER.
3. Press the play button on your cassette recorder.
The prompt symbol &. will reappear when your program
has been loaded.

Be careful when reloading your own programs. If you
mistype the name of your program, for example

load mestuff instead of load mystuff

the computer will obediently search for the misspelt
name. All you <can do is type CLOSE and reload your
program.

Programming bugs

As you run some of your programs in PROLOG (or in any
other computer language), you are bound to discover
mistakes or bugs in the programs themselves. Don’t

worry! Bugs or mistakes are a normal part of
programming. Sometimes these bugs in your programs are
very simple ones, but they are nevertheless

frustratingly elusive. It takes time and patience to
find them, but find them we do in the end! It is
almost impossible to write a perfect program at the

first attempt. Good programming in fact 1is not
necessarily writing bug-free programs, but finding your
bugs and correcting them as and when they occur. If

you think you have problems, then remember that a
system’s bug in one of the NASA space launches cost the
United States Government billions of dollars. The
bug? A missing hyphen!

Points to remember

1. Data or sentences can be written in the form Ind -
Rel - Ind. These are known as atomic sentences.

2. Data or sentences are added to the database by
means of the command word add and by placing your data
in brackets.

3. To save your program use save followed by the name
of your program.

4. To load your program use load followed by the name
of your program.

5. Don’t forget to LOAD SIMPLE.

8 The Purple Planet — Micro-PROLOG for the Spectrum 48K

Looking at sentences in PROLOG so far, you might be
tempted to think that they are really ordinary English
sentences. They are not! Although in either English
or PROLOG you can write

Zorg likes Selina
Nurkl hates Doc

it is not correct English to write
Nurkl hates visitor

unless of course you are using ‘headline’ English such
as you would find in a daily newspaper, for example

Man bites dog!
or
Jury frees pig!

A logical language

PROLOG is a logic-based language. This means that the
computer follows a set pattern such as Ind - Rel - Ind,
together with rules that you the programmer have
invented. You cannot for example say in PROLOG

add(Doc eats too-much and would-like a-rest)

You would have to use two sentences in accordance with
the Ind - Rel - 1Ind pattern that the computer
understands (see Chapter 2). If you try typing in this
data statement, you will receive the error message

Not a valid sentence form
But some of the data in the vocabulary of the Purple

Planet does not make sense when you try to make certain
binary sentences. The following sentences

Ind Rel Ind
Zorg dangerous city
Astra friend fuel

food not-friend Doc

may be acceptable to the computer, but they are not
acceptable to us! To use the words, dangerous, friend,
and not-friend, you need another form of atomic
sentence.

The Purple Planet 9
But all the same try typing
add(food not-friend Doc)
Does the computer accept this sentence?

Building a database
When you describe the planet in PROLOG, you can use
simple atomic sentences of the Ind - Rel - 1Ind form

and/or another type of atomic sentence which uses the
Ind - Rel form.

Binary relationship

The Ind-Rel-Ind form of sentence which you have met
already 1is also known as a binary relationship. The
word binary means two and refers to a relation between
two individuals.

Individual Relationship Individual
Doc likes food

In this example, likes is the relation between Doc and
food. The complete sentence - Doc 1likes food - 1is
called a binary relationship.

Unary relationship

Individual Relation
Astra friend

The word unary means one and refers to a single
relationship word that defines a single individual:

Doc visitor
Nurk2 monster

Unlike a binary relationship, a unary relationship
tells you what category something belongs to. It is
like a label attached to an individual

surface dangerous
Zorg friend
lichen purple

To add these descriptions of the Purple Planet to
your database you type

add(Doc likes food)
add(Astra friend)

10 The Purple Planet — Micro-PROLOG for the Spectrum 48K

The accept command
If you have a list of individuals with only one
relation (that is, a unary relationship, such as Astra
friend or Nurkl not-friend) you can speed things up by
using the PROLOG word accept for those relationships
that are the same.

We will assume for instance that the names of
certain individuals in the database are those of robots
from the underground city, and that they are friends.
You can enter this data into the database. But before
you do this you need to establish the identity of the
robots from the 1list of names. You can either type
individually

add(Zorg robot)
add(Astra robot) etc.

or use the PROLOG word accept. This saves you having
to retype your sentences several times.
Type

accept robot
Now place the names of the robots in brackets:

(Zorg) (Astra) (Zenith) end
When vyou have completed the list of individuals that
are robots, you type another PROLOG word - end.

You can do the same for the relation friend.
Instead of typing

add(zZorg friend)
you can use

accept friend

and then list all the friend sentences in your program.
This will include the crew of the spaceship as well.
Type

accept friend
Now list their names individually in brackets.

(Zorg) (Astra) (Zenith) (Capt-Tee) (Selina) (Doc)
(X-101) end

The Purple Planet 11

Checking your program

It is a good 1idea to check that the computer has in
fact accepted your data. You can do this by typing
either

list
or

list all

When you type list all, the entire program you have
written will appear on the screen. If on the other
hand you only want to look at a particular piece of
data, you can use 1list followed by the particular
relation you want.

For example, list friend

Zorg friend
Astra friend
Doc friend etc

5 Input and Output

Data to be added to your database is also called input.
Whenever you type a sentence on the keyboard this is
an input to the computer. This applies to computing in
general and not just to PROLOG. Subsequently, data
that 1is produced on the screen from the computer is
called output.
Here are some sample sentences that illustrate input
and output.

E (Input) accept visitor
(Capt-Tee) (Doc) (Selina) end

5 (Input) list visitor

(Output) Capt-Tee visitor
Doc visitor
Selina visitor

Sentence patterns

As you write your descriptions or data, you will tend
to use a particular form or pattern. It is important
that you are aware of this and that you try to maintain
a pattern throughout your programs. Maintaining a

12 The Purple Planet — Micro-PROLOG for the Spectrum 48K
pattern helps you to <check your programs and at the
same time makes the answering of questions more
efficient, especially from the computer’s point of
view. You could write

zorg friend
Capt-Tee friend

or

Zorg is-a-friend
Capt-Tee is-a-friend

But whichever pattern you use, stick to it! Don 't
write for example a mixture of

Zorg is-a-friend
and
Capt-Tee friend
The computer will not mind, but you could find yourself

in a muddle later as you expand your use of PROLOG (see
the section on List patterns in Chapter 3).

Points to remember

1. The sentence form Ind - Rel - Ind is known as a
binary (two) relationship.

2. The sentence form Ind - Rel is called a unary (one)
relationship.

3. To speed up the input of data having the same
relation word, you can use the command word accept.

4. It 1is very important to maintain a consistent
sentence pattern when building a database. Don’t mix
your sentences. Keep to one form.

Activity 1

Who, What and Where?
From the vocabulary and the story, find out who and
what live where. Describe this data and put it into the
database.

For example, we know that Nurks are monsters and
that they live on the surtace. So we could write

accept dangerous
(Chief-Nurk) (Nurkl) (Nurk2) (surface) end

The Purple Planet 13

Where do you find food and water or fuel for the
spaceship? Who likes whom?

Remember to use both binary and unary sentences, Ind
- Rel - Ind and Ind - Rel. Use add and use accept.
Invent your own words. Change the story if you like.
When you have completed your database, type list all
and check to see whether the data that vyou have
compiled is correct or not.

Editing in PROLOG

We have already discussed how to correct typing and
spelling errors using the cursor keys. But sometimes
you may press the ENTER key before realising that you
have made a mistake, or you may later decide to make
changes in a completed program. For this reason PROLOG
has an in-built editing facility. Often you will need
to delete certain words or change a whole sentence.
You have several choices for editing your program.

1. delete. This erases incorrect sentences by
referring to their relation (Rel).

To use delete , you must first list the sentences
that relate to the one you wish to remove. For

example, type
list friend
The screen output is

Zorg friend
Astra friend
Zenith friend
Selina friend
Doc friend
Capt-Tee friend

To remove Astra friend, you type

delete friend 2
Now type list friend, to check that Astra has been
deleted.

To add new sentences just use add in the normal way,
that is

add(Spectrum friend)

or use accept friend and place the new data in
brackets.

14 The Purple Planet — Micro-PROLOG for the Spectrum 48K
Alternatively you can type

delete(Astra friend)

In this case, delete is used as the opposite of add.

2. kill. You can remove all the data about friend by
typing

kill friend

3. kill all. More drastically you can destroy the
entire program by typing

kill all

4. edit. This allows you to alter sentences in your
database. For example

list found-on

The screen output is
food found-on surface
water found-on surface
Chief-Nurk found-on surface
Nurkl found-on surface

Nurk2 found-on surface

If you wish to change food in sentence 1 to lichen,
you type

edit found-on 1
The screen outputs
1 (food found-on surface)

The 1 indicates the first sentence in your list of
sentences. You can now alter this sentence by using

the cursor controls (CAPS Shift with 5) and (CAPS
Shift with 8) in conjunction with the delete key (CAPS
Shift with 0). To delete the word “food you use CAPS

Shift with 0. You then position the cursor and type in
lichen. You can also alter the order of your sentences
by changing the number before the sentence on the
screen. Thus to change the position of (lichen
found-on surface) change 1 to another number.

The Purple Planet 15

From English to PROLOG
A small vocabulary in PROLOG can be used to express a
wide range of ordinary English sentences.

Capt-Tee is-taller-than Selina
also means that Selina is shorter than Capt Tee.
Doc is-older-than Capt-Tee

also means that Capt Tee 1is younger than Doc. The
computer however cannot read meanings into sentences
that are not explicitly stated. It literally accepts
what you tell it. PROLOG in fact is very precise, as
the following nonsense sentence will demonstrate.

Nurkl gorms-up fetter

This is quite acceptable in PROLOG, and as far as the
computer is concerned is a true statement. In ordinary
English this sentence could have several meanings. It
could mean that Nurkl is eating (gorms-up) a particular
kind of cheese (fetter) or it 1is perhaps propelling
itself up a certain hill called a fetter.

The computer does not interpret sentences, it only
knows what you tell it.

Logical nonsense

PROLOG stands for Programming in Logic. You may have
come across formal logic at school, either using logic
blocks and tracks, or as a word exercise in
mathematics. Logical statements do not necessarily
have to make sense in English. They do however have to
obey the rules of logic. This you have already come

across in PROLOG. You have been using the binary
relationship Ind - Rel - Ind and the unary
relationship, Ind - Rel. If you apply these forms or

patterns to the following data, you can produce some
quite extraordinary sentences.

Individual Relationship
I likes

Selina is-afraid-of
Doc helps

Nurkl

Nurk?2

16 The Purple Planet — Micro-PROLOG for the Spectrum 48K

Here are some sentences in ordinary English and
their equivalent in PROLOG

English: I help Selina and Doc
PROLOG: I helps Selina
I helps Doc

In the above example you need two atomic sentences for
one in English. Note also that the spelling of the
relation word does not change!

English: Doc is helped by me
PROLOG: I helps Doc
English: Selina likes me

PROLOG Selina likes I
English: Selina is afraid of Nurkl and Nurk2.
PROLOG: Selina is-afraid-of Nurkl

Selina is-afraid-of Nurk2

Asking questions (atomic questions)
Having established your database about the Purple
Planet, you are now ready to ask questions.

The simplest form of question is an atomic question
using the PROLOG word is. Atomic questions using is are
written in exactly the same way as atomic sentences.
They are always enclosed in brackets:

is (Capt-Tee visitor)

The computer scans the database to see if it can find
the sentence that you are querying. If it does, it
outputs YES. 1In this case the answer is YES.

In the next example

is(Nurkl friend)

the computer does not find this sentence in the data
base, so the answer is NO. What the computer does, 1is
to match your input sentence with what is stored in the
program. If the sentence can be matched with a
sentence already in the program, then the output is
YES.

Try asking these questions

is(food found-on surface)
is(Chief-Nurk dangerous)
is(Zenith robot)

is(Zorg lives-in city)
is(X-101 lives-on surface)
is(fuel lives-on surface)
is(Nurkl gombles slithy)

The Purple Planet 17

A query game

You might 1like to try this with your friends. First
create your database and then get your friends to ask
questions about the planet. If they receive a YES to
their query, they score a plus point. If the answer to
their query is NO, then they are awarded a minus point.
Working with young programmers, I have found this game
great fun. It all depends of course on what you have
put into your programs in the first place!

There are no fixed rules on how to play the game,
but here are a few suggestions.

1. Tell them a few things about the planet and then
ask a friend or group of friends to identify the
characters in the story. You must provide them with
the basic vocabulary and tell them how to query the
database. The players have to use is.

(a) Who is Zorg? Is he or she a visitor, monster or
robot? Ask a question such as

is(Zorg visitor)

The answer to this query is NO, so they receive a minus
point. On the other hand if they ask

is(Zorg robot)

they receive a plus point and can go on to the next
question or part of the game.

2. Having established who the characters are, the
players can now find out more details about the
characters.

(b) Where does Zorg live? In the city, or on the
surface?

is(Zorg lives-in city)
(c) 1Is Zorg a friend or enemy?
is(Z2org friend)

3. Another approach is for the players to land on the
planet and assume the identity of the space visitors.
(a) You land on the planet and look for fuel and food
supplies. 1Is the planet a friendly place or is it full
of dangers? You can either run into a monster (score a
minus point) or meet a friend (score a plus point).
This you do by asking questions such as

is(Zenith friend)

18 The Purple Planet — Micro-PROLOG for the Spectrum 48K

The answer is YES, so you score a plus point. But if
you ask

is(Nurk2 friend)

the answer is NO and you score a minus point.
You can meet the following:

Chief-Nurk Zorg
Nurkl Zenith
Nurk?2 Astra

Can you survive on the planet by finding food and
water? Can you make friends, and at the same time
avoid the monsters? Make up your own questions and
rules to play this game. Test your friends and perhaps
offer them a few surprises.

Database for the Purple Planet
Here is a database for the planet created by pupils at
Whetley Middle School in Yorkshire.

Characters

Capt-Tee visitor Chief-Nurk monster
Selina visitor Nurkl monster
Doc visitor Nurk?2 monster
Zorg robot Nurks monster
Astra robot

Zenith robot

X-101 computer

Friend and foe
Zorg friend Chief-Nurk not-friend

Astra friend Nurkl not-friend
Zenith friend Nurk?2 not-friend
Doc friend Nurks not-friend

Selina friend

Who lives in the underground city?
Zorg lives-in city
Astra lives-in city
Zenith lives-in city

Who lives on the surface?
Chief-Nurk lives-on surface
Nurkl lives-on surface
Nurk2 lives-on surface
Nurks lives-on surface

What is found on the surface
food found-on surface
water found-on surface

The Purple Planet 19

What is found in the city?
fuel found-in city

Extra data
Chief-Nurk attacks city

Nurkl attacks city
Nurk?2 attacks city
Nurks attacks city
Chief-Nurk dangerous
Nurkl dangerous
Nurk?2 dangerous
Nurks dangerous
surface dangerous

Using PROLOG now!
The applications of PROLOG for building an active
database are limitless. You should start now. Build
up a database of subjects or things that interest you,
or if you prefer, just experiment with the language and
see what you can do with it. It is up to vyou. Don ‘t
just read this book, but switch on your Spectrum and
start typing! As you work through the sections of this
book, trying out some of the ideas and 1in particular
ideas of your own, you will learn how to expand your
databases and, more important still, how to manipulate
them and make them do what you want them to do!

Here are just some of the ideas for getting started,
suggested by young PROLOG users.

Aircraft spotting
Chinese cooking

Sports - Olympic records
Football results
Personal record
Gardening calendar
Family Tree

Athletic chart

Stamp collection

First Aid instructions
Weather record
Historical facts

Joke Box - a collection of favourite jokes and gags

Whatever your interests, you should find PROLOG a
useful tool in the pursuit of a hobby or a specific
subject you wish to study.

2 The Nurks Strike Back!

Variables in PROLOG

Asking questions so far has been rather a slow process.
If you want to find out who lives on the surface for
example, you have to work through each individual name
until you strike 1lucky, or simply list the relation.
There is however a quicker method. This is to use what
are called variables. You have probably already come
across variables in Maths. They are simply letters
which are used in the place of missing numbers, for
instance

x + 10 = 20

where x 1is a variable standing for the numbers that
added to 10 equal 20, or

x -y =15

where x and y are variables standing for the numbers
that in a subtraction sentence equal 15.

Finding the unknown

A variable in PROLOG stands for anything or any one who
is unknown in your question. It is a kind of place
holder, waiting to be filled with a value (that is, the
name of the missing thing or person). Thus, to find
out if there is any one who lives on the surface of the
planet, you type

is(x lives-on surface)

20

The Nurks Strike Back! 21

This means, 1is there any one x, who lives on the
surface? Since the Nurks live on the surface of the
planet, the screen output for this query is YES.

In PROLOG we use the letters x,y,z, or X,Y,Z as
variables. We can also use x,y,z, or X,Y,Z2 followed by
a number such as x1,x2 or y2,y3 etc.

For example you could have

is(X22 lives-on surface)
or

is(Y9 lives-on surface)
Try some of these letters with numbers yourself. How
high can you go?

Although you can only use x,y,z or X,Y,Z, it does
not matter which letter you choose to use. Try asking

is(y lives-on surface)

is(Z lives-on surface)

is(X lives-on surface)

is(z lives-on surface)
The answer will always be the same.

Here is another question to find out if there 1is
anything in the underground city:

is(x found-in city)
From the database, we know that rocket fuel is to be
found in the city, so the screen output is YES.

Here are another two examples
Is somebody a friend?

is(x friend)

Answer
YES

Does Astra live somewhere?
is(Astra lives-in y)

Answer
YES

22 The Purple Planet — Micro-PROLOG for the Spectrum 48K

Using two variables
You can ask a question using two variables, for
instance

is(x lives-on X)

The answer to this question is YES.

What you are asking in plain English is - does somebody
live on something? The little x stands for the names -
Chief-Nurk, Nurkl, Nurk2 - while the big X stands for
the word surface. Now try asking

is(X lives-on x)

This time the big X stands for the names of the
monsters, while the 1little x stands for the word
surface.

However if you ask

is(x lives-on x)

the answer will be NO. Why?

In this question we have asked whether someone lives on
someone, that is - Does Chief-Nurk live on
Chief-Nurk...? The computer searches for the relation
‘lives-on’~ and gives the x variable the value
Chief-Nurk, Nurkl or Nurk2. Then it starts looking for
the second x in our question which is in fact the same
as the first x. 1In fact it is looking for

Chief-Nurk lives-on Chief-Nurk

Nurkl lives-on Nurkl

Nurk2 lives-on Nurk2...!
Once you have used a particular variable for a name,
the computer will keep that name for the rest of the
question.

The same rule applies to y,z and Y,Z:

is(y lives-on Y)

or
is(Z lives-on z)

The answer to both these questions is YES. However if
you ask

is(z lives-on z)

the answer will be NO.

The Nurks Strike Back/ 23

Points to remember
It is a good idea to experiment with these PROLOG
variables, until you have understood how they can be
used. Remember that they are place holders, which
represent the unknown in your questions. Variables are
in fact wused in everyday life. You are probably
familiar with the TV commercial which asks housewives
which margarine is creamier - Brand X or Brand Y?

We could add this information to the data base and
ask

is(x creamier)

but I am afraid the answer would not be very helpful.
It would always be YES!

@ Using - which

The PROLOG word is provides us with the following
facts:

(a) Someone lives on the surface of the planet.
(b) Something is found in the underground city.
(c) Somebody is a friend.

(d) Someone lives in the city.

(e) Something is found on the surface.

It would be more useful on the other hand to know who

and what lives on the surface, in the city, etc. This
we can find out by using another PROLOG word, which.

Let us ask the same gquestions again, but this time
using which, instead of is.

which(x:x lives-on surface)
The answer to this query is

Chief-Nurk

Nurkl

Nurk?2

No (more) answers

which(x:x found-in city)

24 The Purple Planet — Micro-PROLOG for the Spectrum 48K

Answer
fuel
No (more) answers

which(x:x friend)

Answer
Capt-Tee
Selina
Doc
Zorg
Astra
Zenith
No (more) answers

But we have used x twice and a colon(:) as well!
Whenever you use the word which, the sentence that
follows is always composed of two parts.

In the first example,

which(x:x lives-on surface)

the first part is x followed by a <colon (:). The
second part is x lives-on surface. (In this example I
have used x. I could have used z or y, or X or Y, it
does not matter which letter you choose.)

Answer pattern
The first part 1is called the answer pattern. It is
separated from the second part by a colon (:).

Data pattern
The second part 1is called the data pattern. This
second part is your question

x lives-on surface
The data pattern must have the same form or pattern as
the sentences in your database. This is because PROLOG
works by matching patterns.

But why have the first part? Why not just write

which(x lives-on surface)

The Nurks Strike Back! 25
To understand why the first part is necessary, let us
examine what the computer does. The computer scans the
database, searching for the data sentence

(x lives-on surface)

It finds three sentences to match the data pattern in
your question

(1) (Chief-Nurk lives-on surface)
(2) (Nurkl lives-on surface)
(3) (Nurk2 lives-on surface)

The x of your question is the x in
(x lives-on surface)
so the computer outputs

Chief-Nurk
Nurkl
Nurk?2

and since there are no more sentences to be matched, it
outputs

No (more) answers

The variable box

In order to output your query, the computer uses an
answer pattern, which you have also labelled x. The
answer pattern is like a box. When you type the first
part of the sentence, you create a box labelled x,
which waits to receive the answer to the x of the
second part of the sentence. The following
illustration will help to make this clearer.

X : X lives-on surface

First part of sentence Second part of sentence

The answer to (x lives-on surface) is placed in the box
labelled x. This all happens of course behind the
scenes. All you see on your screen is the answer to (x

26 The Purple Planet — Micro-PROLOG for the Spectrum 48K

lives-on surface), that is, the second part of your
question or data pattern.

Let’s try another query, using y this time instead
of x:

which(y:y found-in city)

The first part of the sentence sets up a box labelled
y. The second part, (y found-in city), tells the
computer to search for this sentence in the database.
The answer is

fuel
No (more) answers

y Ly found-in city

The output - fuel- is placed in the y box.

Expanding the variable box
You can also play with the box and use it to output
extra data. Here are some more questions

which(z:z lives-in city)

Answer
Zorg
Astra
Zenith
No (more) answers

which(y:y dangerous)

Answer
Chief-Nurk
Nurkl
Nurk2
surface
No (more) answers

The Nurks Strike Back! 27
Let s now expand the variable box:

which(z is a friendly robot:z lives-in city)

Answer
Zorg is a friendly robot
Astra is a friendly robot
Zenith is a friendly robot
No (more) answers

which(x is a hairy monster:x dangerous)

Answer
Chief-Nurk is a hairy monster
Nurkl is a hairy monster
Nurk2 is a hairy monster
surface is a hairy monster(oops!)
No (more) answers

In these 1last two examples we have created two
boxes, z and x. We have also added additional data to
the boxes, before they have been assigned values.

Zzis a f'riendlg

z lives-in citg
robot

X s a hairy . X da ngerous
monster

28 The Purple Planet — Micro-PROLOG for the Spectrum 48K

Whatever you write in the first part of your question
will be printed on the screen, together with the answer
to your data pattern.

Try these atomic questions

which(what a lovely y:y dangerous
which(rocket z:z found-in city)

which(z is good for you:z found-on surface)
which(y:y friend)

which(X:X likes Selina)

which(Y:Y lives-on x)

which(Z: Chief-Nurk hates 2Z)

which(x helps y:x likes y)

In a question with several variables, you only get
the names of individuals referred to in the variable
box. For instance

which(z:z hates y)

You do not get the word - visitor - because the unknown
y of the data pattern is not given in the answer
pattern (that is, our box). In other words you didn’t
ask for it. You only asked for z.

which(x:y lives-on X and y hates x)

Here you ask for the value of x. The answer is
therefore - visitor. The other variables y and X do not
appear in the answer pattern (that is, the first part
of your question) and therefore they are not retrieved
from the database.

However you can ask

which(x helps y:x likes y)

and receive two names for x and for y respectively,
because you included both x and y in the answer pattern
(that 1is, the first part of your question). Try this
and see for yourself.

There are various combinations of text and variables
that you can use. Try your own. How many variables
can you use? How much text <can you print in the
variable box?

The Nurks Strike Back! 29

Cracker jokes
You can either write your own cracker jokes or collect
them from Christmas crackers and add them to the Joke
Box suggested at the end of Chapter 1.

a Database

add (runner-beans help athletes)

add (hippopotamouse is-~largest-type mouse)
add(an-astronut is-called a-crazy-spaceman)
add(a-safe-robbery is-an-easy robbery)

@ Questions

which(x:x help athletes)

which(x:x is-largest-type mouse)
which(x:x is-called a-crazy-spaceman)
which(y:y is-an-easy robbery)

El Molecular questions

You may want to ask different kinds of questions, using
a more concise form than the atomic sentence. This can
be done by combining atomic sentences into molecular
sentences. The simplest form is

Ind - Rel - Ind and Ind - Rel - Ind
is(Zorg likes Selina and Zorg likes Doc)

What you have here 1in fact are two atomic sentences
that are joined together by the conjunction and.
(Alternatively, the symbol & can be used.) Whereas in
English you can say

Zorg is a robot and likes visitors

30 The Purple Planet — Micro-PROLOG for the Spectrum 48K

in PROLOG you must use two atomic sentences to say

this. The second half of the sentence in ordinary
English must be replaced with another atomic sentence
in PROLOG. The two atomic sentences are joined

together by and.
is(Zorg robot and Zorg likes visitor)

In this example you must repeat the name Zorg.
Here are some more examples

is(food found-on surface & water found-on surface)
is(x found-in city and x likes y)

You might want to ask whether the Chief Nurk hates
visitors and attacks them:

is(Chief-Nurk hates visitor & Chief-Nurk attacks
visitor)

In all these examples the pattern Ind - Rel - Ind has
been maintained throughout.

Let us leave molecular questions for the moment and
return to our story.

Extending the game

"The visitors, alias the crew of the spaceship, led by
Captain Tee, make their way to a water hole on the
surface. They are accompanied by Zorg and Astra. They
arrive safely at the water hole and begin to fill their

containers. Suddenly a Nurk appears on a ridge
opposite. Zorg responds by firing a laser torch at the
monster. The Nurk roars with pain and anger. It

retreats over the top of the ridge. The crew finish
filling their containers and return to the underground

city. The Nurk however has only had its fur singed.
It follows the crew and discovers the entrance to the
cave. Later that evening the Nurks, in full force,

attack the city."

The Nurks Strike Back! 31

Activity 2

Here is some more data

Individual Relationship
g laser-torch strike-back

Nurks retreats

fur follows

containers is-singed

pain fill

city-entrance fires

crew roars-with

water-hole

takes-note-of
go-to

Write a database for the following questions.

is(crew go-to water-hole and crew fill containers)
is(Zorg fires laser-torch and Nurkl roars-with pain)

is(fur is-singed and Nurkl hates robot)
is(Nurkl follows crew and Nurkl takes-note-of

city-entrance)

is(Nurks strike-back and Nurks attacks city)

Molecular questions with variables
You can query these sentences, using is and which:

is(x is-singed and y hates robot)

Answer
YES

is(z go-to water-hole & z fill containers)

Answer
YES

is(y follows z and y takes-note-of x)

Answer
YES

32 The Purple Planet — Micro-PROLOG for the Spectrum 48K

This question in ordinary English is - Does somebody
follow somebody else and does that somebody take note
of something?!

which(x:x fires laser-torch and y roars-with
pain)

Answer
Zorg
No (more) answers

which(y:z follows crew and z takes-note-of y)

Answer
city-entrance
No (more) answers

Joke Box with molecular questions

S Data

add(gooseberry green-and-hairy and gooseberry
goes-up-down in-lift)

add(pavement wears shoes and pavement has-no
feet)

@ Questions

which(z:z green-and-hairy and z
goes-up-down in-lift)

which(X:X wears shoes and X has-no
feet)

The Nurks Strike Back! 33

One by one

Sometimes you may require only a single answer to your
question and for this you can use the command word
one. This is used in the same way as which, but with
a difference. Instead of the computer giving you all
the possible answers to your question, it outputs only
one answer at a time.

Zorg likes Doc
Zorg likes Capt-Tee
Zorg likes visitor

one(x:Zorg likes x)

Answer
Doc
more? (y/n)

You receive one answer followed by the prompt - more?
(y/n) If you answer yes, the next answer is given.

Capt-Tee
more? (y/n)

This continues until all the sentences have been
matched. The final answer for this example is

visitor
No (more) answers

The command word one is therefore useful for
controlling the number of answers you require for a
particular question. For example,you might be choosing
volunteers for a summer camp. You require two climbing
instructors and four swimming instructors. Supposing
you have numerous applicants, who are all equally
qualified, you can select the required number by using
one.

=

(J Sharp) offers swimming

(W Jones) offers climbing

(B Dutton) offers climbing
(F Smith) offers swimming

(G Stringer) offers swimming
(M Woods) offers swimming

(T Betts) offers climbing

(V Walker) offers swimming

34 The Purple Planet — Micro-PROLOG for the Spectrum 48K

Answer
(W Jones)
more? (y/n) vyes
(B Dutton)
more? (y/n) no

i

one (x:x offers climbing)

one (x:x offers swimming)

Answer

(J Sharp)

more? (y/n) yes
(F Smith)

more? (y/n) yes
(G Stringer)
more? (y/n) yes
(M Woods)

more? (y/n) no

Activity 3
Use the following new data, together with some words of
your own to describe the planet, using molecular
questions.

Individual Relationship
g purple-lichen blows
mountains grows
hot-wind rise-above
clear-water flows
pink-sky shine
blue-moons situated
stars appear
dust in-the
landscape fit-to-drink

Here are a few examples

is(hot-wind blows and dust blows)

[?:l which(x:x rise-above mountains and x shine)
which(y:y flows south and y fit-to-drink)
one(z:z shine in-the pink-sky)

The Nurks Strike Back! 35

Summary
In PROLOG there is no distinction between program and
database. To write a program means to create a

database. Data is added to the database by writing
descriptive sentence. These sentences are made up of
two kinds, binary form and unary form. These sentences
can also be questioned, using the same format by which
they were added to the overall program. There are four
types of questions:

(1) Atomic questions using is.

(2) Atomic questions with variables using is and
which.

(3) Molecular questions using is.

(4) Molecular questions using is and which.

Use one to output one answer at a time to your
question.

To check your individual data sentences use list
followed by the relation word. For example list friend
or list likes. To check your entire program, type list
all.

3 Birds, Friends and Neighbours

A popular television quiz programme called Master Mind
tests contestants on items of general knowledge and
asks them questions about a specific subject they have
chosen. PROLOG allows you to build your own
encyclopedia of knowledge, such as would be useful if
you were a contestant in Master Mind. For example, you
might be interested in birdwatching. Looking at and
identifying birds can be a rewarding and fascinating
pastime. The British Trust for Ornithology,
established in 1962, recruits birdwatchers who keep
records of common and rare species of bird throughout
the British Isles.

PROLOG 1is ideal for collecting and storing such
information. Already you have the tools to do this.
You might store your knowledge something like this.

g add(owls belong-to birds-of-prey)
add(eagles belong-to birds-of-prey)
add(sparrow-hawks belong-to birds-of-prey)
add(kestrels belong-to birds—-of-prey)

Lists as individuals

A more convenient way of storing data is to make a list
of the birds of prey. This is done by placing the
individual names of the birds 1inside brackets as
follows

(owls eagles sparrow-hawks kestrels)

36

Birds, Friends and Neighbours 37

Instead of writing a single sentence for each bird, I
have placed all the birds together in a list, and then
used this list in a single sentence. Instead of four
separate sentences, we now have just one

add((owls eagles sparrow-hawks kestrels)
belong-to birds-of-prey)

You will notice that the list of birds is enclosed

in brackets, which in turn 1is placed 1inside the
brackets of the data sentence.
As soon as you place the names of the birds in
brackets, you have created a list, which the computer
accepts not as separate individuals, but as one
individual (word), just as it accepts an individual
like Zorg or Capt-Tee.

As far as the computer 1is concerned, the list,
however long it may be, is one individual.

Here are some more examples of the use of a list as
an individual

(cormorant puffin albatross) belong-to sea-birds
(thrush blackbird lark) belong-to songbirds

Everyday lists

We use 1lists all the time in everyday situations such
as shopping or writing 1lists of things to do, or
compiling a list of team members in the school football
team. Lists are, for most of us, the normal method of
recording things. In PROLOG all you have to remember
is to use brackets to create your lists, and to
remember that the computer accepts a 1list as an
individual.

Let’s 1look at some more bird examples using lists.
The following examples are classified by colour. Here
as always it is important to keep to a set pattern. It
will help you to read the data as well as help you to
spot any errors in your program.

Binary form

Individual Relation Individual

(rook crow raven

blackbird swift) belong-to Black-land-birds
(owl skylark thrush

eagle warbler) belong-to Brown-land-birds
(pigeon cuckoo coal-tit

sparrow-hawk) belong-to Grey-land-birds

(robin bullfinch
chaffinch swallow) belong-to Red-breast-or-head

38 The Pumple Planet — Micro-PROLOG for the Spectrum 48K

Using two lists
(duck swan) nest-site (marshland river-side)
(house-martins swallows) nest-site (eaves roofs)

Unary form
Individual Relation

(Dodo Moa) extinct
(chicken turkey duck goose) domestic

When using a list or a number of lists, always check
your use of brackets. PROLOG will in any case prompt
you, should you leave out any final brackets. Try
typing

add((robin thrush) belong-to songbirds

The computer will prompt you with a figure 1. This
stands for the missing bracket.

List processing

Using lists in PROLOG is known as list processing. It
is a very versatile tool for organizing and
manipulating data. There are various combinations of
lists that you can use. Some of these will be
discussed later. For the moment let us look at data
sentences that use one or more lists.

Identifying birds in flight
1. By shape of wings

(swallows swifts) have-wings (long pointed)
(doves pigeons) have-wings (broad pointed angled)
(finches sparrows) have-wings (short)
2. By flight patterns
(birds of prey) flight-details (hovers
broad-long-wings solitary-flight)
(gulls) flight-details (slow-wing-beats glide
fly-in-flocks)
List patterns
Maintaining a pattern 1is very important. In the
previous examples the pattern was
(type of bird) flight-details (details)

or

(name of birds) have-wings (details)

Birds, Friends and Neighbours 39

Each description used this pattern, that is, a list -
relation word - list.
We could have written

gulls flight-details (slow-wing-beats glide
fly-in-flocks)

that is, ‘gulls’ without the first set of brackets. 1In
this case, the pattern would have been interrupted.

(gulls) is therefore written as a list and not as an
ordinary individual. The same applies to (short).

The empty list

This idea of pattern is again important should you wish
to use an empty list in your database. For example you
might compile a database of birds that swim, in which
you would like to include some that do not fly:

(arctic-tern) flight-details (hover-above-waves
fly-in-flocks)
(penguin) flight-details ()

Penguins of course do not fly, so the second list is
empty. Writing () however does not mean nothing! It
is known as an empty list and is a useful device in the
database.

Changing the subject for the moment, an empty list
could be used in a family record for example

The Makepeace family 1735-1812

(James Katherine) parents-of (May Thomas)
(Kevin Sarah) parents-of (Alice Jane)
(Brian Wendy) parents-of (Susan)

(Edward Mary) parents-of ()

Note that there is a consistent pattern throughout the
sentences. Each sentence is composed of two lists, one
for the parents and one for the children. At a glance
it can be seen that Edward and Mary have no children.
The empty list has been used to indicate this fact.

Prose writing using lists

Another feature of 1lists 1is the ability to record
information in the form of ’‘prose’, that is ordinary
English sentences.

Unusual sightings
(gold-crest) located (15th Jan 1984 in garden in
Warwick Avenue, London)
(white-bird) located (l16th Jan 1984 in West
Hampstead - an albino blackbird with white feathers)

40 The Purple Planet — Micro-PROLOG for the Spectrum 48K

Note that when you are using lists for prose writing,
you do not need hyphens, except of course for special
emphasis or where they are used in ordinary English
sentences. Having said this, you will find that most
of the programs in this book have been written using
hyphens in order to save on lengthy descriptions in the
database. But this by no means implies that you have
to be brief or that you have to use abbreviated forms
of sentence. You might for example wish to compile a
database of quotations, which you would 1like to
retrieve from the data base in full. 1In this case you
would wuse the full prose form of sentences rather than
short data descriptions.

(Revelation 6 13) verse (And the stars of heaven
fell to the earth, even like a fig tree casts its
unripe fruit, when she is shaken by a mighty wind)

As I have said before, it all depends on what you
want to do with PROLOG. What really matters is that
your programs do the job you want them to do.

Secret messages

Another use of prose writing in 1lists could be to
record secret information for your friends to find by
asking the ‘right’ questions:

Capt-Tee says (Meet me at the big crater, tonight at
2200 hours)

Chief-Nurk says (visitors are making their way to
the big crater. We will attack when it gets dark)

I leave the rest to your own imagination.

Joke Box again
Did you know that most comedy is manufactured?
Professional scriptwriters in show business, who have
to make a living out of comedy, seldom rely on
inspiration alone. They use certain techniques to
manufacture gags and jokes. One way to do this 1is to
build up a database of associated words. The database
could be a collection of car-words such as

engine boot seats glove-compartment
petrol gears etc.

Birds, Friends and Neighbours 41

Writers first try to find associations between these
J{ words and other subjects, and then they apply the
technique of exaggeration. Taking size as an example,
you could have the following jokes

add((our car is so small, you can only put one
finger into the glove compartment) joke)

add((My aunt’s car is so old that it has grey hair
under the bonnet) joke)

add((And in winter, my aunt puts a thick knitted
sock in its boot) joke)

add((my car is so small, that it never goes without
its rattle) joke)

I have recorded the jokes using the prose facility in
lists. The prose sentences are the individual, while
the relation word is joke. The data is stored in the
unary form Ind - Rel.

Suppose for example you would like to write a comedy
script for a school show or perhaps for a party; this
can be done by creating your own store of words and
ready-made jokes. To make a list of car-words you
could use accept car, and then place each individual
word in brackets:

accept car
(engine) (bonnet) (glove-compartment) etc.

Ready-made jokes can be added to your database using a
list. A 1list allows you to write your jokes 1in
ordinary English:

add((what can jump higher than a house? Anything. A
house can’t jump) joke)

add((What is an archaeologist? A man whose career
is in ruins) joke)

add((What is the best time to buy chicks. When they
are going cheap) joke)

Best sellers
(Ghost stories by Major Jump) best-sellers
(Channel Swimmer by Frances Near) best-sellers
(Cliff Fall by Eileen Dover) best-sellers
(No Hiding Place by I.C. Hugh) best-sellers

Use accept best-sellers and make up your 1list of
titles.

42 The Purple Planet — Micro-PROLOG for the Spectrum 48K

Points to remember

1. You can create a list by placing your data inside
brackets.

2. The list is treated by the computer as an
individual.

3. By using lists your data can be entered in the form
of ordinary English or prose.

4. Single names can also be stored in your database in
the form of a 1list (gulls), which 1is sometimes
necessary in order to preserve the pattern of your
sentences.

Thus ‘gulls”® can be written alternatively as
(gulls). The first 1is a word, the second is a list:
both however are individuals.

5. Remember to count your brackets.

Bird-watching record

I find 1lists ideal for recording sentences of data
in place of a single individual name. For example, if I
want to record the characteristics of a particular
species of bird, I could use a list to do this.

Individual Relationship Individual
pigeon has (0010110)

Here I have used a 1list as an individual, namely
(0010110).

This particular list is a coding which identifies
any species of bird that I am observing. It works like
this: each category is represented by either 1 or 0, in
which 1= YES and 0= NO.

For example, the first figure stands for the colour
black, the second for brown, the third for grey, etc.

(colours) black
brown
grey
long pointed wings
broad, pointed, angled wings
common species
rare species

Birds, Friends and Neighbours 43

Looking at the data for pigeon, the 1list (0010110)
means

not black

not brown

grey

not long pointed wings
broad, pointed, angled wings
common species

not rare species

o+~ +HOoOH+HOOo

Each figure represents a particular characteristic.
A figure 1 in the case of the pigeon means, YES the
pigeon does possess this characteristc, while a 0 means
NO, the pigeon does not have this characteristic.

Here are the characteristics for a swallow

Ind Rel Ind
swallow has (1001010)

The code for swallow means

black

not brown

not grey

long pointed wings

not broad, angled wings
common species

not rare

oo OO

This system can be applied to virtually any subject.
It 1is already used in many businesses like shops, for
example to keep records of stocks or to record
information about personnel, their age, qualifications,
salaries etc. It 1is very useful for keeping club
records or a record of a hobby collection, in fact
almost anything.

Athletics meeting
Here 1is another system using a list, this time for
recording events at an athletics meeting.

E (Jackie Tarrant) events (1 01 0)
(Lorraine Simpson) events (1 1 0 0)
(Irina Laski) events (1 0 0 1)
(Rachel Gascoigne) events (01 0 1)
(Stephanie Turner) events (1 0 1 1)

(Philip Beckwith) events (0 0 0 1)
(Gordon Mills) events (1 1 1 0)
(Chris Gregory) events (0 1 1 0)
(Tony Bland) events (1 0 0 1)
(Ian Hart) events (0 0 1 1)

44 The Purple Planet — Micro-PROLOG for the Spectrum 48K

In this database, the code applies to both ladies” and

men’s events. Again figure 1 = YES (for those taking
part in a particular event, while 0 = NO (not taking
part 1in a specific event). For Ian Hart therefore the

list (0 0 1 1) stands for

not long jump
not high jump
track relay
hurdles

= = O O

According to his code, Ian is taking part in the track
relay and the hurdles race.

Swimming club

The same system can be applied to the records of your
local swimming club. At a glance you can, supposing you
are the secretary, monitor your members’ swimming
skills and other relevant information.

g (Nick Turner) record-states (1 1 1 1)
(Robin Stuart) record-states (01 0 0)
(Wilfred Smith) record-states (1 0 0 0)
(Frances Pauley) record-states (1 1 0 0)

The code for Frances Pauley means

breast-stroke

crawl

not more than 15 lengths

not life-saver (bronze medallion)

O O =

Friends and neighbours

Your computer can also help you to be a good neighbour.
The following database, using the same system as for
birds, athletics and swimming, is called Community Care
or Needy Neighbours. You can compile a list of needy
persons 1in your neighbourhood - people who would
appreciate a little care and attention, a <chat for
example, or some help in an emergency. Names in this
record are of course imaginary.

5 (Jim Slater) has (01 1 0 0 0)
(Mary Biggs) has (1 01 1 10)
(Fred Brown) has (1 1 0111)
(Jane Smith) has (11 0110)
(Alice Ginn) has (01 0 0 0 0)

Birds, Friends and Neighbours 45
Let s take the coding for Jim Slater

not elderly

handicapped

mobile (can get out of the house)
not living alone

no pets

no telephone

O oo+ +—Oo

Compare Jim’s coding with that for Jane Smith

elderly

handicapped

not mobile (bed ridden?)
living alone

pets

no telephone

O - = O - =

For these records I have used two 1lists linked by
the relation word has. Note the pattern of sentences
throughout the record.

Individual Relation Individual
(Fred Brown) has (110111)

Data retrieval
Let s take a look now behind the scenes, as it were,
and investigate the very centre of PROLOG. This centre
is the making of rules. PROLOG is fundamentally a
rule-based programming language. Any sentence in
PROLOG that contains variables is a rule.

Up to now you have only used variables in questions:

is(x belong-to birds-of-prey)
is(y dangerous)

or
which(x:x water-bird)
which(y:swallow belongs-to y)

But variables can be used in data statements, such as

add(x belongs-to y)
add(z have-wings X)

which means that something belongs to something else,
and that some things have wings of a certain type.

This form of rule, although acceptable to the
computer, is of very little practical use so far as we
are concerned.

46 The Purple Planet — Micro-PROLOG for the Spectrum 48K

;] The conditional rule

For a rule to have real practical value, you need to
add a conditional statement as follows

x belong-to birds-of-prey if x hunt z

Let ‘s take a real life example from birdwatching:

owls belong-to birds-of-prey if owls hunt animals
The form of the rule is

CONCLUSION if CONDITION(S)
In our example, owls belong to birds of prey (the
conclusion) provided they hunt animals (the condition).
You can of course have as many conditions as you like.
I have only used one condition in the rule about birds
of prey. To apply this rule, it is necessary to compile

some more data:

add(owls hunt (mice voles birds beetles))
add(kestrels hunt (mice birds fish))

[?] Asking questions

Having described the feeding habits of owls and
kestrels, you can now query the database about birds of
prey:

which(x:x belong-to birds-of-prey)
The computer searches the database and finds the rule

x belong-to birds-of-prey if x hunt z
The variable z represents the list of hunted animals
which is (mice voles birds beetles) in the case of owls
and (mice birds fish) in the case of kestrels.

Since owls and kestrels can be substituted for the x
in the sentence

X hunt z

the computer assigns the value of x to the x in the
sentence

x belong-to birds-of-prey

Birds, Friends and Neighbours 47
and outputs the answer

owls
kestrels
No (more) answers

It is very important that you should understand how
rules are made in PROLOG. Your successful programs
depend upon clear and precise rules. It is better to
begin with simple, obvious rules, than lengthy
complicated descriptions that stretch your and other
users~ logic to the extreme!

The following rules are obvious but nonetheless
effective for retrieving information from the database:

is-a carnivore if x only-eats animals

is-a omnivore if x eats animals and x eats seeds
eats sea-food if x lives-near sea

feeds-on fish if x nests-on y and y near coast

=W N
X X X X

Let s substitute names for the variables in these
four rules:

1. eagle is-a carnivore if eagle only-eats animals

2. robin is-a omnivore if robin eats animals and robin
eats seeds. (The robin like many birds is an omnivore,
eating seeds and worms, grubs etc.)

3. gull eats sea-food if gull lives-near sea

4. puffin feeds-on fish if puffin nests-on cliffs and
cliffs near coast

In rule 4, there are two conditions, one for the
nesting habitat and one for the site of habitat.

As you build your database you will need to make
rules, so that you can cross-reference data as and when
you need it. Work through the following examples and
see 1if you can adapt the rules to your own type of
program.

48 The Purple Planet — Micro-PROLOG for the Spectrum 48K

R
=)

x feeds-on fish if x nests-on y and y near coast

add(puffin nests-on cliffs)
add(cormorant nests-on cliffs)
add(gannet nests-on cliffs)
add(cliffs near coast)

]

Answer
puffin
cormorant
gannet
No (more) answers

E]EE
x is-a carnivore if x mainly-eats y and vy

is-found-in sea

which (x:x feeds-on fish)

a add (herring-gull mainly-eats fish
add(puffin mainly-eats fish)
add(cormorant mainly-eats fish)
add (gannet mainly-eats fish)
add(fish is-found-in sea)

@

Answer
herring-gull
puffin
cormorant
gannet
No (more) answers

which(x:x is—-a carnivore)

Birds, Friends and Neighbours 49

Rules for the Joke Box

Here we can expand our use of rules and use not just
one rule but three. I have in fact used here one main
rule that consists of two sub-rules.

Rule
x built-upside-down if x feet smell and x nose-runs

Sub-rules
x feet smell if x runs too-much
X nose-runs if x has-a cold

Data
Bill runs too-much Jill has-a cold
Susie runs too-much Bill has-a cold

Fred runs too-much

which (x:x built-upside-down)

Answer
Bill
No (more) answers

Individuals in a list
Not only can you use lists as individuals in your
programs

Ind Rel
(milk bread tea jam) shopping-list
(The great hairy Nurk) sings

but you can refer to the individuals within a list.
Let s stop and think about this for a moment.

We know that a list is treated as an individual in
the same way that an individual name is treated as an
individual. We can write for example

Doc
Hairy-Nurk
(Milk bread tea jam)

50 The Purple Planet — Micro-PROLOG for the Spectrum 48K

These are all valid forms of individuals in PROLOG.
However, to go a stage further, the individual items
within a list can themselves be lists. Take for example

(Milk bread tea (jam))

This 1list contains four items, one of which is a list,
that is (jam).
Again

(England (Dorset(Poole)))

Here we have something quite different. Each item here
is a list. We have a 1list called England in which
there is a list called Dorset, in which there is a list
called Poole.

Items within a 1list can therefore also be lists
themselves and have their own individuals within them
and so on. It is rather like those Russian dolls which
fit inside each other or like the song about the fly on
the wing, the wing on the bird, the bird on the egg...

You can also extract the individual items listed in
a 1list, such as milk or bread etc., in the shopping
list.

But to demonstrate this manipulation of individuals
inside a 1list, let wus return to the databases which
used codes for specific items of data.

If we return to the database called Athletics
meeting, it is now possible to illustrate the use of a
rule which will enable you to retrieve and manipulate
the items within a list.

1. x events (long jump) if x does (1l]y)
2. x events (high jump) if x does (y 1|z)
x events (track relay) if x does (y z 1|X)
x events (hurdles) if x does (y z X 1)

Heads and Tails
In rule 1, the data sentence can be divided into two
parts.

In the first part

x events (long jump)
x is the variable for a competitor’s name, say Lorraine
Simpson or Chris Gregory. (Note that you can use any of
the in-built variables available in PROLOG.) In the

second part

if x does (1l]|y)

Birds, Friends and Neighbours 51

you meet a new idea 1in lists. This is the pattern
called heads and tails. A list itself can be
partitioned into a head and a tail. This ability to
partition a list enables you to retrieve or extract
individual items from the list. In x does(l]y), the
list (l|y) has been partitioned into the head 1 and the
tail y. The two have been separated by the sign |.

In rule 2, the list is (y 1|z), in which the head is
y 1, while the tail is z. Again in rule 3, the list is
(y z 1|X) in which y z 1 is the head, and X is the
tail. If you relate each variable to the events in the
rules, you will see that the figure 1 in the head of
each 1list corresponds to the information 1in the
database of each competitor. For instance

L HT Hu
(Jackie Tarrant) events (1 0 1 0)

From the code, we know that Jackie is taking part in
the long jump (L), and the track relay (T). If you
look at rule 1 you will see - x does (l|y) which means
Jackie Tarrant does (long jump).

Again looking at rule 3

x does (y z 1]|X)

means Jackie Tarrant does (track relay). Each figure 1
in the rules corresponds to the code given to each
competitor. The first column, that is long jump (L),

corresponds to the first figure 1 in the list (1]y).
The remainder, or tail of the list, is represented by
the variable y.

The second column, which 1is high jump (H),
corresponds to the second item or figure 1 in the list
(y 1|z). The variable, y this time, denotes a space,
while the 1 is followed by the tail or remainder of the
list:

L HT Hu
1010

Jackie’s code registers 0 or NO for high jump and 0 or
NO for hurdles (Hu).

which (x:x events (long jump))
Answer
Jackie Tarrant Gordon Mills
Lorraine Simpson Tony Bland
Irina Laski No (more) answers

Stephanie Turner

52

The Purple Planet — Micro-PROLOG for the Spectrum 48K

Swimming Club

a (Nick Turner) record-states (1 1 1 1)
(Robin Stuart) record-states

(Wilfred Smith) record-states

(001 0 0)

(1 00 0)

(Frances Pauley) record-states (1 1 0 0)

Here

R

XX X X

@

are the rules for the swimming club:

can-do (breast stroke) if x record-states (1l]|y)
can-do (crawl) if x record-states (y 1|z)

can-do (>15 lengths) if x record-states (y z 1|X)
can-do (life saving) if x record-states (y z X 1)

which (x:x can-do (life saving))

Answer
Nick Turner
No (more) answers

Needy Neighbours

=)

R

XX X X X X

@

(Jim Slater)
(Mary Biggs)
(Fred Brown)
(Jane Smith)
(Alice Ginn)

has
has
has
has
has

(0
(1

(1
(0

== -0

o o O+ -

O = K+ = O

O -+ O

situation (elderly) if x has
situation (handicapped) if x has (y 1]|z)
situation (mobile) if x has (y z 1]X)
situation(living alone) if x has (y z X 1]Y)
situation (pets) if x has (y z X Y 1|2)
situation (no telephone) if x has (y z X Y Z 1)

0)
0)
1)
0)
0)

(1ly)

which (x:x situation (no telephone))

Birds, Friends and Neighbours 53

Answer
Fred Brown
No (more) answers

Bird-watching record

5 pigeon has (0 01 0 1 1 0)
(L00101o0)

swallow has

char (black plumage) if X has (1]Y)

char (brown plumage) if X has (Y 1]2)

char (grey plumage) if X has (Y Z 1]|x)

char (long pointed wings) if X has (Y Z x 1l|y)
char (broad pointed wings) if X has (Y Z x y 1]|z)
char (common species) if X has (Y 2 x y z 1|Yl)
char (rare species) if X has (Y 2 x y z Y1l 1)

E T T

As the letter variables are used, beginning in these
rules with X, the last variable 1is a letter with a
positive number, that is Yl. 1If more variables were to
be wused in your database then the next variables would
be 21, x1, yl, z1, Y2 and so on. char stands for
characteristic.

[?] which (x:x char (common species))

Answer
pigeon
swallow
No (more) answers

More heads and tails
You can use the heads and tails pattern in ordinary
queries or questions, as well as with codes.

add((robin bullfinch linnet) belong-to Group-A)

If you want to know which is the first bird in the
list, you can ask the following question.

which (x:(x|y) belong-to Group-A)

Answer

robin

No (more) answers
If you want to know which is the second bird in the
list, you can ask the following question.

54 The Purple Planet — Micro-PROLOG for the Spectrum 48K
which (x:(y x|z) belong-to Group-A)

Answer

bullfinch

No (more) answers
To find out all but the last bird in the list, you
ask the next question.

which ((x y):(x y|z) belong-to Group-A)
Answer

(robin bullfinch)
No (more) answers

Telephone and address file

can

Lists are useful for keeping a file of your friends’

telephone numbers and addresses.
You might compile something like the following

(Ivan Ivanovich) tel((92 39301)(address 5 Church
St)))

(Kim Davies) tel((92 35322) (address 16 Rose
View)))

(Jack Stephens) tel((92 34421) (address 12 Rose
View)))

(Betty Morgan) tel((92 28845) (address 22 Mount
Drive)))

(Andy Sherwood) tel((94 33211) (address 46 West
Ave)))

(Jane Hanham) tel((94 34377)(address 2 Danes
Ave)))

(Kevin Golden) tel((94 35397)(address 17 Low Lane)))
(Roman Nello) tel((94 37389) (address 11 High St)))
(Jane Walmsley) tel((01 566 3423) (address 34 Wick St

wW9)))

(Dorothy Erol) tel((01 584 2341) (address 12 Robinson

Rd SW17)))

(Bashir Khan) tel((01 727 5645) (address 2a Bleeding

Heart Yard EC1l)))

Don’t be put off by the number of brackets! If

you

look carefully you will see that the program is made up
of 1lists within lists. Using lists in this manner is

quite easy with practice.

Birds, Friends and Neighbours 55

[?] Asking questions

To query this database you will need some rules

x tel London-area if x tel((0l]|y)z)
x tel Leeds-area if x tel((92]y)z)
x tel Ilkley-area if x tel((94]|y)z)

These rules use the head and tail pattern. They
contain both a telephone number and an address
The telephone number for London is contained in the
list (0l1|y) in which the code for London is 01, the
head, while the tail of the 1list y contains the
telephone exchange and the individual telephone number.
The address is contained in the list represented by z.
Another way of looking at this is to call the 1list
(01]y), and z sub-lists of the main list that contains
both, that is ((0l]y)z).
Other codes are

Leeds 92
Ilkley 94

You can query any part of the data by using variables,
lists and heads and tails patterns.

Queries
Who has a London telephone number?
which(x:x tel London-area)
Answer
(Jane Walmsley)
(Dorothy Erol)
(Bashir Khan)
No (more) answers
What is Jane’s surname?
which(x:(Jane x) tel London-area)
Answer
Walmsley
No (more) answers

Who lives at 46 West Ave?

which(x:x tel(y (address 46 West Ave)))

56 The Purple Planet — Micro-PROLOG for the Spectrum 48K

Answer
(Andy Sherwood)
No (more) answers

What ‘s the address of Roman Nello?
which(y: (Roman Nello) tel(x vy))

Answer
((address 11 High St))

I find that sometimes I know a person’s address, but
cannot remember the postal area or postal code.

What is Bashir’s surname and postal area?
which((x yj:(Bashir x) tel(z(xl x2 x3 x4 x5 y)))

Answer
(Khan EC1)

In the 1last question, variables were used to find
the surname (x) and the postal area (y). 2z was used as
a place holder for the telephone number, while x1, x2,
x3, x4, and x5 were place holders for the words
‘address 2a Bleeding Heart Yard~.

Activity 4
Make a database to list telephone/addresses. How many
different kinds of question can you ask?

Activity 5
Try writing a database using this format:

(Xenia King) tel((12345) (address 45 Short
Hill) (postcode BD16 1AA)))

4 Animal, Vegetable or Mineral?

There 1is a guessing game that you may have played with
your friends, which 1is called Animal, Vegetable or
Mineral? One person thinks of an object or idea, while
the others have to guess what it is. The only clue is
whether it is animal, vegetable or mineral. You can use
the same idea with interactive programs in PROLOG. To
write an interactive program in which the computer can
ask you questions, you use the PROLOG word is-told.

Loading TOLD

To use 1is-told you will need to load the program TOLD
on the cassette. Type LOAD TOLD and press ENTER. You
will find the program a little way after SIMTRACE and
EXPTRAN.

Customs check
Some countries (in this program a particular Arab one)
do not allow certain items through their customs. This
highly simplified program is a check 1list which asks
foreign visitors what they have in their luggage. If a
restricted item 1is reported, the program asks the
visitor to open his or her suitcase.

We will assume that customs officials have drawn up
the following list of restricted items.

g items not-allowed Hi-Fi-equipment
items not-allowed fire-arms
items not-allowed Coca-Cola
items not-allowed Elvis-Presley-records
items not-allowed fruit

Coca Cola and Elvis records were in fact restricted
items in Saudi Arabia during the 1960s.

57

58 The Purple Planet — Micro-PROLOG for the Spectrum 48K

To run this program you use a combination of which and
is-told

which (x is a restricted item. Please open your
suitcase: items not-allowed x & (Do you have x)
is-told)

Let’s break this down into answer pattern and
question pattern.
1. The answer pattern is

X is a restricted item. Please open your suitcase:

Remember you can write instructions or messages inside
the answer pattern. These will be printed on the screen
together with the answer to your question.

2. The question pattern is

items not-allowed x & (Do you have x) is-told

Here we have two parts to the question pattern. The
first is the pattern

items not-allowed x

This relates to the items listed in the database such
as fruit or fire-arms etc. The second part is

&(Do you have x) is-told

The question inside the brackets is again a “free’
message. You can write anything you like. I could
have written (Have you got x) or (Is there any x in
your suitcase) and so on.

The word is-told makes the program ask you
questions.

Copy 1in the data sentences and try questioning the
data:

which (x:x is a restricted item. Please open your
[?—] suitcase: items not-allowed x & (Do you have x)

is-told)
Answer

Do you have fruit No

Do you have fire-arms No

Do you have Coca-Cola Yes

Coca-Cola is a restricted item. Please open your
suitcase

Animal, Vegetable or Mineral? 59

Airport security

This program checks for metals in your luggage. If you
have something made of metal, you must open your
suitcase.

=

suitcase contains scissors
suitcase contains suit
suitcase contains razor
suitcase contains socks
suitcase contains magazines
suitcase contains alarm-clock

@

which (x metal detected. Please open your
suitcase:suitcase contains x & (x made of metal)
is-told)

Answers
suit made of metal? NO
razor made of metal? YES

razor metal detected. Please open your suitcase
socks made of metal? NO

magazines made of metal? NO
penknife made of metal? YES
penknife metal detected. Please open your suitcase

Roman dig

This program is another check 1list used for sorting
“things” found on a Roman dig. The Chief Archaeologist
wants anything made of mineral to be placed in a
special box. Fred, a novice digger, uses PROLOG to check
what he has found.

=

Fred finds corn-seeds
Fred finds sandal
Fred finds pottery
Fred finds spear

Fred finds rope

il

which (z is a mineral. Place in Box 3:Fred finds z
&(z mineral) is-told)

60 The Purple Planet — Micro-PROLOG for the Spectrum 48K

Answers
corn-seeds mineral? NO
sandal mineral? NO
pottery mineral? YES

pottery is a mineral. Place in Box 3
spear mineral? YES

spear is a mineral. Place in Box 3
rope mineral? NO

I am not suggesting that you should use this program
for a real dig. I am only outlining some of the uses
of 1is-told as a check 1list in certain practical
situations.

But what about a fantasy world?

Fraggle Rock

=

Fraggles live-in rock
Fraggles live-in light-house
Fraggles live-in garden
Fraggles live-in caves

@

which(Let the music play down at Fraggle y:Fraggles
live-in y &(Fraggles live in y) is-told)

Answers
Fraggles live in rock? YES

Let the music play down at Fraggle rock
Fraggles live in lighthouse NO...

Recursion
An important feature of PROLOG is recursion. Recursion
can be demonstrated by the following program

=

Leeds part-of Yorkshire
Bath part-of Avon-county
Yorkshire part-of England
Avon-county part-of England

In this program we would 1like to define a new
relationship is-in. For this we need two rules:

B 1. x is-in y if x part-of y
2. x is-in y if z part-of y and x is-in z

Animal, Vegetable or Mineral ? 61

Let s follow the computer as it searches the data and
applies the two rules. Let’s start the program with
the question

[}] which(x:x is-in England)

The computer begins its search for the answer by going
to the relation is-in. The first rule tells the
computer to go and search the part-of relation. In the
part-of relation, the data reads

Yorkshire part-of England
Avon-county part-of England

part-of is now the same as is-in, so that anything that
is part of something is also 1in that something,
according to the first rule.

Yorkshire is now not only part-of England, but also
in England. The same applies to Avon-county.

The computer now returns to the second rule. In
this rule the computer is going to have to search the
part-of and the is-in relations in order to return the
required answers. This process that tells the computer
to search the rule itself is called recursion. The
rule that employs this process is called a recursive
rule or definition. The computer goes to the second
rule and finds a value for x but it also needs to find
a value for z as well

z part-of y if x is-in z

If we 1look at z we can see that we are trying to find
the area that is both part-of somewhere and has a place
in it as well.

Look at the following network

Yorkshire

/°Q,’

o
5'&

Leeds o =T e E ngland

and you will see that Yorkshire and Avon are both part
of England and each has a town in it. Having found
that z is in Yorkshire, the computer evaluates

z part-of y and x is-in z

or, in plain words, Yorkshire is a part of England and
Leeds is in Yorkshire.

62 The Purple Planet — Micro-PROLOG for the Spectrum 48K

The computer knows that the first part is true from
the data. It knows that the second part is true from
the first rule and from the data.

What will it do next? The computer goes to the
first part of the rule to see what it is that the rule
has established. The first part of the rule states

X is-in y if...

The computer then sees that Leeds is in England and
outputs the answer. This it does for each town in the
database.

B Two rules

You will have noticed that two rules are used in this
program:

(1) x is-in y if x part-of y
(2) x is-in y if z part-of y & x is-in z

The first rule is an ordinary rule, that is, it is not
recursive. The second rule 1is recursive, since the
relations is-in refers back to the relation being
defined.

All recursive rules or definitions must be preceded
by at least one ordinary or non-recursive rule or fact,
otherwise they end up chasing their own tails. They
become completely circular! Try running the program
with the recursive rule first and see what happens.
You should receive the error message - "No space left".

Family tree

Tracing your ancestors or those of other people can be
a fascinating and exciting experience. You can obtain
information about family histories from church
registers or town records. Some of these go back
hundreds of years. You could be related to King Harold
or William the Conqueror, or even Boadicea. The next
program is another example of recursion, in which the
relation ‘ancestor-of” 1is part of a recursive rule.
Your ancestors are your parents and all the ancestors
of your parents. To define ‘ancestor-of ” we need this
rule:

x ancestor-of y if z parent-of y and x ancestor-of z
(recursive rule)

Animal, Vegetable or Mineral ? 63

Remember! A non-recursive rule is also needed,
otherwise the program will be trapped in an endless
loop. And remember that this non-recursive rule must
be written first:

x ancestor-of y if x parent-of y
(non-recursive rule)

Putting these two rules together, we can define the
relation ‘ancestor-of’. For this example I have chosen
to trace the family of Saint David, the patron saint of
Wales.

=

(Vortigern parent-of Vortimer)
(Vortimer parent-of Anna)
(Anna parent-of Non)

(Gynyr parent-of Non)

(Non parent-of Saint-David)
(Sandde parent-of Saint-David)
(Edeyrn parent-of Cunedda)
(Gwawl parent-of Cunedda)
(Cunedda parent-of Ceredig)
(Ceredig parent-of Corwn)
(Corwn parent-of Sandde)

?)

which (x:x ancestor-of Saint-David)

Answer
Vortigern
Vortimer
Anna
Gynyr
Non
Sandde
Edeyrn
Gwawl
Cunedda
Ceredig
Corwn
No (more) answers

The tree for Saint David (circa 562) traces the Saint’s
ancestors back to King Vortigern of the Britons (circa
448) and to King Edeyrn of the Picts (circa 389). How
far in recorded history can you trace your ancestry?

64 The Purple Planet — Micro-PROLOG for the Spectrum 48K

Activity 6
Can you complete this program?

[i] Rules

(1) 2
(2) x joined-to y if ? connected-to x and ? joined-to

?
(foot-bone connected-to ankle-bone)
(ankle-bone connected-to leg-bone)

(leg-bone connected-to knee-bone)
(knee-bone connected-to thigh-bone)

?)

which (x:x joined-to y)

Answer
?

Lists and recursion
Recursion can also be used with lists, as the following
example shows.

Rules
x belongs-to (x]|y)
x belongs-to (y|z) if x belongs-to z

This means that x belongs to the list (y|z) if and only
if x also belongs to the tail z, which 1is already a
member of the list (y|z). To check these rules you can
ask the foliowing.

Query
which (x:x belongs-to (parrots swans))

Answer
parrots
swans
No (more) answers

Query
which(x:x belongs-to (football hockey))

Answer
football
hockey
No (more) answers

A

Animal, Vegetable or Mineral ? 65

The length of a list

Sometimes you might want to know how many answers there
are to a particular question. For example you might
want to know how many children there are in a family
data